9 research outputs found

    Ginger Cannot Cure Cancer: Battling Fake Health News with a Comprehensive Data Repository

    Full text link
    Nowadays, Internet is a primary source of attaining health information. Massive fake health news which is spreading over the Internet, has become a severe threat to public health. Numerous studies and research works have been done in fake news detection domain, however, few of them are designed to cope with the challenges in health news. For instance, the development of explainable is required for fake health news detection. To mitigate these problems, we construct a comprehensive repository, FakeHealth, which includes news contents with rich features, news reviews with detailed explanations, social engagements and a user-user social network. Moreover, exploratory analyses are conducted to understand the characteristics of the datasets, analyze useful patterns and validate the quality of the datasets for health fake news detection. We also discuss the novel and potential future research directions for the health fake news detection

    ReCOVery: A Multimodal Repository for COVID-19 News Credibility Research

    Full text link
    First identified in Wuhan, China, in December 2019, the outbreak of COVID-19 has been declared as a global emergency in January, and a pandemic in March 2020 by the World Health Organization (WHO). Along with this pandemic, we are also experiencing an "infodemic" of information with low credibility such as fake news and conspiracies. In this work, we present ReCOVery, a repository designed and constructed to facilitate research on combating such information regarding COVID-19. We first broadly search and investigate ~2,000 news publishers, from which 60 are identified with extreme [high or low] levels of credibility. By inheriting the credibility of the media on which they were published, a total of 2,029 news articles on coronavirus, published from January to May 2020, are collected in the repository, along with 140,820 tweets that reveal how these news articles have spread on the Twitter social network. The repository provides multimodal information of news articles on coronavirus, including textual, visual, temporal, and network information. The way that news credibility is obtained allows a trade-off between dataset scalability and label accuracy. Extensive experiments are conducted to present data statistics and distributions, as well as to provide baseline performances for predicting news credibility so that future methods can be compared. Our repository is available at http://coronavirus-fakenews.com.Comment: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20

    A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability

    Full text link
    Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to their great ability in modeling graph-structured data, GNNs are vastly used in various applications, including high-stakes scenarios such as financial analysis, traffic predictions, and drug discovery. Despite their great potential in benefiting humans in the real world, recent study shows that GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data and lack interpretability, which have risk of causing unintentional harm to the users and society. For example, existing works demonstrate that attackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph. GNNs trained on social networks may embed the discrimination in their decision process, strengthening the undesirable societal bias. Consequently, trustworthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users' trust in GNNs. In this paper, we give a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability. For each aspect, we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs. We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthiness

    Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series

    Full text link
    Anomaly detection is a widely studied task for a broad variety of data types; among them, multiple time series appear frequently in applications, including for example, power grids and traffic networks. Detecting anomalies for multiple time series, however, is a challenging subject, owing to the intricate interdependencies among the constituent series. We hypothesize that anomalies occur in low density regions of a distribution and explore the use of normalizing flows for unsupervised anomaly detection, because of their superior quality in density estimation. Moreover, we propose a novel flow model by imposing a Bayesian network among constituent series. A Bayesian network is a directed acyclic graph (DAG) that models causal relationships; it factorizes the joint probability of the series into the product of easy-to-evaluate conditional probabilities. We call such a graph-augmented normalizing flow approach GANF and propose joint estimation of the DAG with flow parameters. We conduct extensive experiments on real-world datasets and demonstrate the effectiveness of GANF for density estimation, anomaly detection, and identification of time series distribution drift.Comment: ICLR 2022. Code is available at https://github.com/EnyanDai/GAN

    Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels

    Full text link
    Graph Neural Networks (GNNs) have shown their great ability in modeling graph structured data. However, real-world graphs usually contain structure noises and have limited labeled nodes. The performance of GNNs would drop significantly when trained on such graphs, which hinders the adoption of GNNs on many applications. Thus, it is important to develop noise-resistant GNNs with limited labeled nodes. However, the work on this is rather limited. Therefore, we study a novel problem of developing robust GNNs on noisy graphs with limited labeled nodes. Our analysis shows that both the noisy edges and limited labeled nodes could harm the message-passing mechanism of GNNs. To mitigate these issues, we propose a novel framework which adopts the noisy edges as supervision to learn a denoised and dense graph, which can down-weight or eliminate noisy edges and facilitate message passing of GNNs to alleviate the issue of limited labeled nodes. The generated edges are further used to regularize the predictions of unlabeled nodes with label smoothness to better train GNNs. Experimental results on real-world datasets demonstrate the robustness of the proposed framework on noisy graphs with limited labeled nodes
    corecore